

Communication

Revisiting Noncovalent SO–Amine Chemistry: An Indicator–Displacement Assay for Colorimetric Detection of SO

Alexander V. Leontiev, and Dmitry M. Rudkevich

J. Am. Chem. Soc., **2005**, 127 (41), 14126-14127• DOI: 10.1021/ja053260v • Publication Date (Web): 23 September 2005 Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

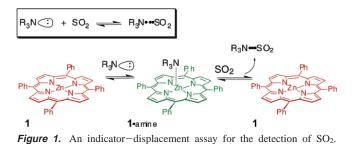
- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

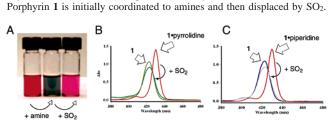
View the Full Text HTML

Published on Web 09/23/2005

Revisiting Noncovalent SO₂–Amine Chemistry: An Indicator–Displacement Assay for Colorimetric Detection of SO₂

Alexander V. Leontiev and Dmitry M. Rudkevich*


Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065

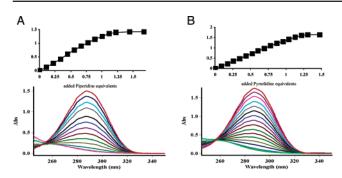

Received May 18, 2005; E-mail: rudkevich@uta.edu

Sulfur dioxide, or SO₂, is an environmentally important gas.¹ It is formed upon burning sulfur-containing fuels, such as coal and oil. SO₂ then dissolves in water vapor to form acid and interacts with other gases and particles in the air to generate sulfates and other harmful products. SO₂ contributes to respiratory illnesses, the formation of acid rain, and atmospheric particles that can be transported over long distances and deposited far from the point of origin. SO₂ is colorless, and the development of optical sensors for this gas is ongoing. Most of these sensors are either based on pH indicators or involve chemical reaction of SO₂ and derived from it (bi)sulfite, with various dyes.² We present here a supramolecular approach for potential detection of SO₂. It includes a noncovalent indicator-displacement assay and is based on the old but rather forgotten donor-acceptor chemistry between SO2 and amines. In the proposed sensing scheme, amines initially form colored coordination complexes with a metalloporphyrin (Figures 1 and 2A). Once introduced, SO₂ competes with the porphyrin for the amine, which eventually leads to the release of the porphyrin and changes in the solution color/absorption. The approach is simple and reliable. Varieties of amines and metalloporphyrins are available, and no covalent linkages between them are required. Accordingly, opportunities to tune and modify the system are very broad. Our results may also regenerate interest in the noncovalent chemistry of SO₂ and other important gases.³

A series of amines were tested (Table 1). In a typical experiment, an amine was added to a solution of Zn-tetraphenylporphyrin 1 in CHCl₃, and the absorbance changes were recorded (Figure 2). As expected, the solution changed from red to dark green; a bathochromic shift of $\Delta \lambda \sim 10$ nm was observed for the Soret band, indicating the formation of the corresponding 1-amine complex. When SO₂ gas was briefly bubbled through the solution, the red color was basically restored; the Soret band returned to its position for the free porphyrin (Figure 2). The 1•amine complex dissociated. and the SO₂•amine adduct was formed. Porphyrin 1 thus served as an indirect colorimetric indicator for SO2. Under the same conditions, CO, CO₂, N₂O, and H₂O did not displace porphyrin 1; no visible spectral changes were detected (see Supporting Information). More aggressive NO₂/N₂O₄ caused significant hypochromic changes in the absorbance, compared to SO_2 , which is due to the chemical reaction with 1.4 These gases are typically present together with SO₂ in industrial exhausts.

That SO₂ and secondary or tertiary amines form stable, 1:1 charge-transfer complexes has been known for decades.^{5–8} The structure of such complexes has been a subject of crystallographic⁶ and computational⁷ papers. Several complexes have been studied in solution.⁸ For this project, we first revisited spectroscopic features of SO₂•amine complexes in apolar solution. Stepwise addition of piperidine or pyrrolidine to a solution of SO₂ in CHCl₃ at room temperature resulted in disappearance of the free SO₂ absorption⁸ at $\lambda_{max} \sim 288$ nm (Figure 3).

Figure 2. (A) Visual detection of SO₂ with porphyrin 1 (CHCl₃ solution, left vial) upon addition of pyrrolidine and then SO₂. (B and C) Absorbance spectra of porphyrin 1 and complexes 1•pyrrolidine (B) and 1•piperidine (C) in CHCl₃ at 23 ± 1 °C ([1] $\sim 2 \times 10^{-6}$ M, [amine] $\sim 10^{-3}$ M). Bubbling SO₂ results in instant hypsochromic shift of the Soret band, which returns to the initial $\lambda_{max} = 421$ nm for free porphyrin 1.


Table 1. Association Constants for Complexes between Porphyrin 1 and Amines^{*a*} and for Amines and SO₂^{*b*} and [SO₂]/Amine Ratios, at which \sim 50% of Porphyrin 1 is Displaced^{*c*,*d*}

amine	K _{assoc} (1∙amine) M ^{−1}	K _{assoc} (SO₂•amine) M ^{−1}	[SO ₂]/amine
pyrrolidine	1.8×10^4	2.0×10^4	2
piperidine	1.3×10^{4}	3.0×10^{4}	1
morpholine	1.1×10^{4}	1.0×10^{3}	30
diethylamine	7.0×10^{2}	2.2×10^{4}	1
quinuclidine	7.0×10^4	1.2×10^{5}	2

 a Direct titration. b Displacement assay. c In CHCl₃ at 23 \pm 1 °C. d All experiments were performed at least in duplicate showing good reproducibility.

Absorbance titration data supported the 1:1 stoichiometry between amine and SO₂, and the association constant values were in the range of 10⁴ M⁻¹. The complexation process was also followed by ¹H and ¹³C NMR spectroscopy in CDCl₃. In particular, upon addition of SO₂, the ¹H NMR signals of the amine α -CH protons notably shifted downfield with $\Delta \delta \sim 0.2-0.3$ ppm. The SO₂•amine complexes were also obtained on a preparative scale by adding the corresponding amine to liquid SO₂ at -30 °C; they were characterized by UV-vis and NMR spectroscopy.

Amines strongly interact with metalloporphyrins. Used in these studies, Zn-porphyrin **1** forms stable **1**-amine complexes in CHCl₃.⁹ The amine nitrogen is coordinated to the metal center. Stepwise addition of an amine to a solution of porphyrin **1** resulted in a bathochromic shift of $\Delta\lambda \sim 10$ nm of the Soret band. For

Figure 3. Titrations of SO₂ ($\lambda_{max} \sim 288$ nm) with piperidine (A) and pyrrolidine (B) in CHCl₃ at 23 \pm 1 °C ([SO₂] = 4 \times 10⁻³ M, [amine] = $4 \times 10^{-4} - 7 \times 10^{-3}$ M).

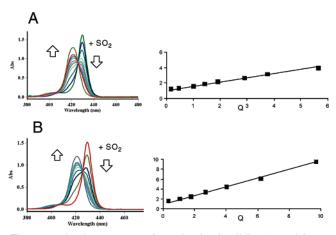


Figure 4. Absorbance spectra of complex 1-quinuclidine (A) and 1-pyrrolidine (B) upon addition of SO₂ in CHCl₃ at 23 \pm 1 °C. Determination of the SO₂•amine association constants was performed by a competitive binding algorithm; see refs 10 and 11.

concentrated solutions, clear color changes were observed from purple-red to dark green. From the UV-vis experiments, the Kassoc values ranging from 7.0 \times 10² (diethylamine) to 7.0 \times 10⁴ M⁻¹ (quinuclidine) were obtained, which are in agreement with the literature (Table 1).9

In the indicator–displacement assay, $^{10} \sim 10^2 - 10^3$ -fold excess of amines versus 1 was used to ensure the quantitative formation of 1•amine complexes at UV-vis concentrations (2 \times 10⁻⁶ M). Solution of SO₂ in CHCl₃ was added stepwise to the solutions of 1 and the corresponding amine in CHCl₃, and the Soret absorbance was monitored. Hypsochromic shifts of the Soret band were observed, indicating the liberation of 1 and thus the formation of SO₂•amine adducts (Figure 4). The isosbestic points imply that clean transformation from the 1-amine complexes to free porphyrin 1 takes place.

Using the algorithm developed by Anslyn and co-workers,^{10,11} the $K_{\rm assoc}$ constants for SO₂•amine complexes were determined from the indicator-displacement titrations (Table 1). These are comparable to those obtained by direct titration experiments between SO₂ and the amines. For example, the K_{assoc} values for pyrrolidine and piperidine, obtained by direct titration, are 1.3×10^4 and $3.3 \times$ 10⁴ M⁻¹, respectively.

To estimate the sensitivity, the [SO₂]/amine ratios were determined in the displacement experiments, at which the concentrations of 1-amine complexes and free 1 are roughly equal (Table 1). When binding constants between amines and porphyrin 1 are smaller than or comparable to those between amines and SO₂, the [SO₂]/amine ratios are small. For example, the K_{assoc} values for 1-diethylamine and SO₂•diethylamine are 7.0 \times 10² and 2.2 \times 10⁴ M⁻¹,

respectively, and the [SO₂]/diethylamine ratio is 1. Morpholine is less basic than other tested amines ($pK_a = 8.3$ compared to $pK_a \ge$ 11 for others) and, as a consequence, binds to SO_2 weaker than to the porphyrin. Accordingly, 30 equiv of SO₂ is required to displace 50% of porphyrin 1. Considering that $10^2 - 10^3$ -fold excess of amines versus 1 is necessary in the displacement assays, these calculations set the SO₂ detection limit at a low millimolar range and also can be used in the design of more sensitive systems.¹²

In conclusion, it is now possible to detect SO₂ utilizing its noncovalent chemistry with amines. The indicator-displacement approach once again proved to be useful. While there are obvious UV changes simply upon addition of SO₂ to an amine, incorporating the porphyrin in the assay brings the response into the visible region of the spectrum. The proposed system discriminates between SO₂ and such exhaust gases as CO_X, NO_X, and moisture. For this preliminary report, commercially available amines and a porphyrin were used; however, synthetic modification of both is possible to achieve more colorful responses. It would also be possible to modify the system for SO₂ detection in aqueous solutions and at the gassolid interface.13 We are working toward these goals and further testing the system selectivity with respect to other gases and volatiles.

Acknowledgment. Financial support is acknowledged from the NSF (CHE-0350958) and the A. P. Sloan Foundation.

Supporting Information Available: Experimental procedures and spectra. This material is available free of charge via Internet at http:// pubs.acs.org.

References

- The US EPA link: http://www.epa.gov/air/urbanair/so2/.
 Selected examples: (a) Mohr, G. J. *Chem. Commun.* 2002, 2646–2647. (b) Stangelmayer, A.; Klimant, I.; Wolfbeis, O. S. Fresenius J. Anal. Chem. 1998, 362, 73-76. (c) Mohr, G. J.; Werner, T.; Oehme, I.; Preininger, **1998**, *362*, *13*–76. (c) Mohr, G. J.; werner, 1.; Oehme, 1.; Preininger, C.; Klimant, I.; Kovacs, B.; Wolfbeis, O. S. *Adv. Mater.* **1997**, *9*, 1108–1113. (d) Raman, V.; Rai, J.; Singh, M.; Parashar, D. C. *Analyst* **1986**, *111*, 189–191. (e) Suzuki, Y.; Imai, S. *Anal. Chem.* **1986**, *58*, 3271–3273. (f) Irgum, K. *Anal. Chem.* **1985**, *57*, 1335–1338. (g) Lambert, J. L.; Chejlava, M. J.; Beyad, M. H.; Paukstelis, J. V. Talanta 1982, 29, 37-40. Reversible chemistry between SO2 and organometallic compounds: (h) Albrecht, M.; Gossage, R. A.; Lutz, M.; Spek, A. L.; van Koten, G. *Chem.-Eur. J.* **2000**, *6*, 1431–1445.
- (3) Rudkevich, D. M. Angew. Chem., Int. Ed. 2004, 43, 558-571 (review).
 (4) Kang, Y.; Zyryanov, G. V.; Rudkevich, D. M. Chem. Commun. 2003, 2470-2471.
- (5) Florjanczyk, Z.; Raducha, D. Pol. J. Chem. 1995, 69, 459-481 (review). (6) (a) Maier, N.; Schiewe, J.; Matschiner, H.; Maschmeier, C.-P.; Boese, R.
- (a) Andrey, A., Schlewer, M., Matsumor, M., 179–188. (b) Childs, J. D.; van der Helm, D.; Christian, S. D. *Inorg. Chem.* **1975**, *14*, 1386-1390. (c) van der Helm, D.; Childs, J. D.; Christian, S. D. *Chem. Commun.* **1969**, 887-888
- (7) (a) Wong, M. W.; Wiberg, K. B. J. Am. Chem. Soc. 1992, 114, 7527– 7535. (b) Douglas, J. E.; Kollman, P. A. J. Am. Chem. Soc. 1978, 100, 5226–5227. (c) Lucchese, R. R.; Haber, K.; Schaefer, H. F., III. J. Am. Chem. Soc. 1976, 98, 7617-7620.
- (a) Grundnes, J.; Christian, S. D. Acta Chem. Scand. 1969, 23, 3583-3584. (b) Grundnes, J.; Christian, S. D. J. Am. Chem. Soc. **1968**, 90, 2239– 2245. (c) Moede, J. A.; Curran, C. J. Am. Chem. Soc. **1949**, 71, 852– 858. (d) de Faria, D. L. A.; Santos, P. S. Magn. Reson. Chem. 1987, 25, 592-593
- (9) Recent review: Satake, A.; Kobuke, Y. Tetrahedron 2005, 61, 13-41. (10) (a) Zhu, L.; Zhong, Z.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 4260-
- (a) Zanu, L., Zaiong, Z., Alistyn, E. V. J. Am. Chem. Soc. 2005, 12/, 4260–4269 and references therein. (b) Wiskur, S. L.; Lavigne, J. J.; Metzger, A.; Tobey, S. L.; Lynch, V.; Anslyn, E. V. Chem.—Eur. J. 2004, 10, 3792–3804. (c) Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963–972.
- (11) Conners, K. A. Binding Constants. The Measurement of Molecular Complex Stability; John Wiley and Sons: New York, 1987.
- (12) For thermodynamic analysis of competition assays, see: Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. Angew. Chem., Int. Ed. 2002, 41, 3811 - 3814
- (13) For visual detection of SO₂ at the air-solid interface, a test strip was prepared by depositing red solution of 1 in CHCl₃ on a filter paper and drying it in air. Addition of pyrrolidine in CHCl₃ changed the color of the strip to green. After drying, this test strip was exposed to SO₂, and its color returned to the original red. See Supporting Information.

JA053260V